Fraction générant son développement numérique

Un article de Wikipedia.

(Différences entre les versions)
(Quelques conséquences)
(Quelques conséquences)
Ligne 38 : Ligne 38 :
=== Quelques conséquences ===
=== Quelques conséquences ===
 +
 +
* 0.999999... = [9] = 9/9 = 1 !
* Il est ''facile'' de diviser par les nombres du type 99..9 puisque le développement numérique de la fraction résultante est connu :
* Il est ''facile'' de diviser par les nombres du type 99..9 puisque le développement numérique de la fraction résultante est connu :

Version du 13 juillet 2013 à 07:42

Sommaire

Fraction générant son développement numérique

But

Déterminer la fraction f dont le développement numérique est 0.a1a2...ak-1aka1a2...ak-1ak... répétant le nombre n=a1a2...ak-1ak où ai pour 1 ≤i ≤ k est un chiffre de 0 à 9.

Introduction

Notation

Pour simplifier l'écriture, la fraction f = 0.a1a2...ak-1aka1a2...ak-1ak... pourra aussi être notée : f = [a1...ak] avec ai pour 1 ≤i ≤ k un chiffre de 0 à 9.

Construction de f

La construction de f est simple, si n = a1a2...ak-1ak alors f = n * 0.00..0100..01... = n * 0.0102...0k-11k0102...0k-11k... = n*[01...0k-11k] = n * [0..01] avec [0..01] composé de k-1 premier 0 et un 1.

Ou f = n * (1/10k+1/102*k+...) = n * (x+x2+x3+...) pour x = 1/10k.

Et, comme 1/(1-x) = 1+x+x2+x3+... si |x|<1.

Alors x+x2+x3+... = 1/(1-x)-1 = x/(1-x).

Appliqué au f précédent :

avec x = 1/10k f = n * x/(1-x) = n * 1/(1/x-1) = n / (10k-1).

Donc f = n / (10k-1).


Et, pour être plus explicite, 10k-1 = 999..99k soit un nombre formé d'autant de 9 que de chiffres dans f = [a1...ak] :

f = n / (10k-1) = n / 9192..9k

Résultats

Ainsi, avec le résultat précédemment acquis :

f = 1/3 = 0.3333... = [3] = 3/9

f = 1/7 = [142857] = 142857/999999

f = 0.201320132013... = [2013] = 2013/9999

Quelques conséquences

  • 0.999999... = [9] = 9/9 = 1 !
  • Il est facile de diviser par les nombres du type 99..9 puisque le développement numérique de la fraction résultante est connu :
    • 4/9 = 0.44444... = [4]
    • 7/9 = 0.77777... = [7]
    • 43/99 = 0.43434343... = [43]
    • 463746178/999999999 = 0.463746178463746178463746178...
    • ...
  • si f = 1/p = [a1...ak] avec p un nombre entier, alors p divise 9192..9k.
    • En effet si 1/p = [a1...ak] alors 1/p = n/9192..9k et donc 9192..9k/p = n (avec n = a1...ak).
    • En particulier :
      • 7 divise 999999 puisque 1/7 = [142857]
      • 13 divise 999999 puisque 1/13 = [076923]
  • Un peu plus drôle :
    • Si f = 1/p = [a1...ak] avec k pair, alors 1/p = n/9192..92*m, avec k = 2 * m, et n = a1...ak, alors n * p = 9192..9k = 99 * (011012...01m) où le dernier nombre est formé de m répétitions du groupe 01.
    • Ainsi, si p est premier et ne divise pas 3 ou 11 (99 = 32 * 11) alors n est un modulo de 99.
    • Et, en particulier, comme n = a1...ak = a1...a2*m = a1a2...a2*m-1a2*m et que 102*j modulo 99 = 1 pour j ≥ 1, alors :
    • n modulo 99 = a1a2 + a3a4 + ... + a2*m-1...a2*m modulo 99 = 0, autrement dit, la somme des paires du nombre n du développement numérique de la fraction 1/p est un multiple de 99.
      • Exemples :
      • 1/7 = [142857]. Et nous avons bien : 14 + 28 + 57 = 99
      • 1/13 = [076923]. Et 07 + 69 + 23 = 99
      • 1/17 = [0588235294117647]. Et 05 + 88 + 23 + 52 + 94 + 11 + 76 + 47 = 396 = 4 * 99
      • 1/19 = [052631578947368421]. Et 05 + 26 + 31 + 57 + 89 + 47 + 36 + 84 + 21 = 396 = 4 * 96

Conclusions

Ressources

[[[Category:Mathématique]] [Category:Divers]]