Crédit, intérêt et primes
Un article de Wikipedia.
Sommaire[masquer] |
But
Déterminer l'intérêt d'un crédit ainsi que la prime à rembourser mensuellement en fonction du taux d'intérêt et du nombre de mensualités pour le remboursement du crédit.
Introduction
Soit les définitions de variables suivantes :
M | montant du crédit ( M > 0) |
t | taux annuel d'intérêt du crédit |
m | nombre de mensualités du crédit |
P | prime mensuelle pour le remboursement du crédit |
I | intérêt du crédit |
Préliminaires
Si un montant M est placé durant une année à au taux d'intérêt annuel t, alors le montant Mannuel à la fin de l'année est :
Mannuel = M ( 1 + t )
Si le montant M est placé durant un mois à un taux d'intérêt annuel t, alors le montant Mmensuel à la fin du mois est :
Mmensuel = M ( 1 + t ) (1/12)
Et, au fil des mois, sur 12 mois, nous avons :
Mannuel = M ( 1 + t ) (1/12)( 1 + t ) (1/12) ...( 1 + t ) (1/12) = M (( 1 + t ) (1/12))12 = M ( 1 + t )
Pour simplifier la notation posons donc :
α = ( 1 + t ) (1/12)
Nous avons alors :
Mmensuel = M α Mannuel = M α12
Prime du crédit
Pour en revenir au crédit, soit un crédit M prêté au taux d'intérêt annuel t durant m mensualités. Et soit P la prime à payer à priori inconnue.
L'idée est simple, initialement, à la mensualité k = 0, le montant du crédit est -M.
Après un mois (k = 1), le crédit initial M prêté au taux d'intérêt t est devenu -M α et nous avons remboursé le crédit en versant la prime P. Le montant du crédit devient donc -M α + P.
Au mois suivant (k = 2), le montant du crédit (-M α + P) prêté au taux d'intérêt t devient (-M α + P) α et nous avons versé la prime P. Le nouveau montant du crédit devient donc (-M α + P) α + P
En continuant ainsi :
-Mk+1 = -Mk α + P (pour k ≥ 0) avec -M0 = -M
En développant la série :
k | Montant du crédit |
0 | -M |
1 | -M α + P |
2 | ( -M α + P ) α + P = -M α2 + P ( 1 + α ) |
3 | ( -M α2 + P ( 1 + α ) ) α + P = -M α3 + P ( 1 + α + α2 ) |
k | -Mk-1 α + P |
n | -M αn + P ( 1 + α + α2 + ... + αn-1 ) = -M αn + P ( α n - 1 ) / ( α - 1 ) |
Et après m mensualités, le montant du crédit est nul et donc
-M αm + P ( α m - 1 ) / ( α - 1 ) = 0
ou
(1) P = M αm ( α - 1 ) / ( α m - 1 )
qui est le montant de la prime recherché.
Intérêt du crédit
Quel est alors l'intérêt du crédit ?
Pour rembourser le crédit M, il a fallu payer m mensualités de prime P.
L'intérêt du crédit est donc
(2) I = m P - M (2') I = m M αm ( α - 1 ) / ( α m - 1 ) - M = M [ m αm ( α - 1 ) / ( α m - 1 ) - 1 ]
Cas particuliers
Cas particulier du taux d'intérêt nul
Pour vérification, considérons le cas du taux d'intérêt nul.
Si le taux d'intérêt est très faible, le développement de αn est
αn = ( 1 + t )( n/12 ) = 1 + n t / 12 + O( t2 ) = 1 + n β t + O( t2 ) si t ≅ 0 et avec β = 1/12
Alors la prime P (1) devient
P = M αm ( α - 1 ) / ( α m - 1 ) ≅ M ( 1 + m β t ) ( 1 + β t - 1 ) / ( 1 + m β t - 1 ) ≅ M (1 + m β t) / m ≅ M / m si t ≅ 0
Nous avons bien que la prime se résume au montant M divisé par le nombre de mensualités.
Et l'intérêt (2) est bien nul.
I = m P - M = m M / m - M = 0
Cas particulier d'une unique mensualité
Si m = 1, la prime P (1) vaut
P = M αm ( α - 1 ) / ( α m - 1 ) = M α ( α - 1 ) / ( α - 1 ) = M α
et l'intérêt (2) est bien celui attendu
I = m P - M = M α - M = M ( α - 1 )
Cas particulier d'un grand nombre de mensualités à un taux non nul
Si le taux d'intérêt est non nul et le nombre de mensualités grand, alors comme
P = M αm ( α - 1 ) / ( α m - 1 )
on a
αm / ( α m - 1 ) → 1 si m grand et t > 0
et donc
P → M ( α - 1 ) si m grand et t > 0
En d'autres termes, la prime P à rembourser tend vers l'intérêt mensuel I = M ( α - 1 ) (cas particulier d'une unique mensualité).
Signification de m grand
Mais quel est l'ordre de grandeur associé à m grand ?
Posons
αm / ( α m - 1 ) ≤ 1 + ε
pour déterminer une borne pour m grand, où ε est un nombre positif proche de zéro.
Alors
1 / ( 1 - 1 / αm ) ≤ 1 + ε 1 / ( 1 + ε ) ≤ 1 - 1 / αm 1 / αm ≤ 1 - 1 / ( 1 + ε ) = ε / ( 1 + ε ) ( 1 + ε ) / ε ≤ αm ln [ ( 1 + ε ) / ε ] ≤ m ln α ln [ ( 1 + ε ) / ε ] / ln α ≤ m
et donc
(4) m ≥ ln [ ( 1 + ε ) / ε ] / ln α
On voit bien que plus ε et / ou le taux d'intérêt (et donc α) est / sont petit(s) et plus m est grand.
Proportionnalités
Les équations de la prime P (1) et de l'intérêt I (2) et (2') montrent que les rapports P / M et I / M ne dépendent que du nombre de mensualités et du taux d'intérêt.
Cela signifie en particulier que si le montant d'un crédit double, la prime et l'intérêt doublent aussi.
Résultats
Pour prendre un cas concret, prenons le cas de la banque Migros qui propose en ligne des crédits au taux de 5.9%.
α = ( 1 + t )1/12 = 1.0047885174
Une de leurs brochures (voir les ressources) résume les primes et les intérêts des crédits en fonction du montant, du nombre de mensualités des crédits et du taux d'intérêts (5.9% et 7.9%).
Selon les calculs effectués sous LibreOffice (v. 4.3.7.2) nous obtenons :
M | M | M | M | M | ||||||||
5000 | 10000 | 15000 | 20000 | 50000 | ||||||||
k | P / M | I / M | P | I | P | I | P | I | P | I | P | I |
mensualité | prime / montant | intérêt / montant | prime | intérêt | prime | intérêt | prime | intérêt | prime | intérêt | prime | intérêt |
12 | 0.0859498286 | 0.0313979437 | 429.75 | 157 | 859.5 | 314 | 1289.25 | 471 | 1719 | 628 | 4297.5 | 1570 |
24 | 0.044206347 | 0.0609523286 | 221.05 | 305.2 | 442.05 | 609.2 | 663.1 | 914.4 | 884.15 | 1219.6 | 2210.3 | 3047.2 |
36 | 0.0303070824 | 0.0910549668 | 151.55 | 455.8 | 303.05 | 909.8 | 454.6 | 1365.6 | 606.15 | 1821.4 | 1515.35 | 4552.6 |
48 | 0.0233688533 | 0.1217049584 | 116.85 | 608.8 | 233.7 | 1217.6 | 350.55 | 1826.4 | 467.4 | 2435.2 | 1168.45 | 6085.6 |
60 | 0.0192150175 | 0.1529010472 | 96.1 | 766 | 192.15 | 1529 | 288.25 | 2295 | 384.3 | 3058 | 960.75 | 7645 |
La prime est arrondie à 5 centimes et l'intérêt est calculé selon (2) pour tenir compte des arrondis de la prime.
Les primes et les intérêts pour toutes les mensualités et les montants correspondent à celles indiquées dans la brochure.
Enfin, calculons quelques limites pour m grand (4) pour un taux d'intérêt de 5.9 %
α = ( 1 + t )1/12 = 1.0047885174
ε | limite m grand | rapport : αm / ( αm - 1 ) | nombre d'années : m / 12 | P / M |
0.1 | 501.95743277 | 1.1 | 41.8 | 0.0052673691 |
0.05 | 637.3175193206 | 1.05 | 53.1 | 0.0050279432 |
0.01 | 966.0947551952 | 1.01 | 80.5 | 0.0048364025 |
0.001 | 1446.2269691269 | 1.001 | 120.5 | 0.0047933059 |
0.0001 | 1928.0445871574 | 1.0001 | 160.7 | 0.0047889962 |
Au vu du nombre d'années que cela représente, autant dire que cela n'est jamais le cas !
Conclusions
Ressources
Pour archivage, la brochure de la banque Migros sur les crédits privés en ligne Migros-brochure-credit-prive.pdf. Les pages 8 et 9 résument les primes et les intérêts pour divers montants de crédits et de mensualités.