Crédit, intérêt et primes

Un article de Wikipedia.

Sommaire

[masquer]

Timer

But

Déterminer l'intérêt d'un crédit ainsi que la prime à rembourser mensuellement en fonction du taux d'intérêt et du nombre de mensualités pour le remboursement du crédit.

Introduction

Soit les définitions de variables suivantes :

M Montant du crédit
t taux annuel d'intérêt du crédit
m nombre de mensualités du crédit
P prime mensuelle pour le remboursement du crédit

Préliminaires

Un montant M est placé durant une année à au taux d'intérêt annuel t, alors le montant Mannuel à la fin de l'année est :

Mannuel = M ( 1 + t )

Si le montant M est placé durant un mois à un taux d'intérêt annuel t, alors le montant Mmensuel à la fin du mois est :

Mmensuel = M ( 1 + t ) (1/12)

Et, au fil des mois, et sur 12 mois nous avons :

Mannuel = M (( 1 + t ) (1/12))12 = M ( 1 + t )

Pour simplifier la notation posons donc :

α = ( 1 + t ) (1/12)

Nous avons alors :

Mmensuel = M α
Mannuel = M α12

Crédit

Pour en revenir au crédit, soit un crédit M prêté au taux d'intérêt annuel t durant m mensualité. Et soit P la prime à payer à priori inconnue.

L'idée est simple, initialement, à la mensualité k = 0, le montant à disposition est M.

Après un mois (k = 1), le montant initial M prêté au taux d'intérêt t est devenu M α et nous avons payé la prime P. Le montant a disposition devient donc M α - P.

Au mois suivant (k = 2), le montant à disposition (M α - P) prêté au taux d'intérêt t est devenu (M α - P) α et nous avons payé la prime P. Le nouveau montant à disposition devient donc (M α - P) α - P

En continuent ainsi :

Mk+1 = Mk α - P (pour k ≥ 0) avec M0 = M

En développant la série :

k Montant disponible
0 M
1 M α - P
2 ( M α - P ) α - P = M α2 - P ( 1 + α )
3 ( M α2 - P ( 1 + α ) ) α - P = M α3 - P ( 1 + α + α2 )
... Mk+1 = Mk α - P
n M sub>n</sub> - P ( 1 + α + α2 + ... + n ) = M sub>n</sub> - P ( α n+1 - 1 ) / ( α - 1 )

Résultats

Conclusions

Ressources