Un article de Wikipedia.
Compteur modulo 16
But
Déterminer les composants logiques d'un compteur modulo 16.
Introduction
La réalisation est centrée sur des bascules JK Master / Slave (voir Bascule JK sur Wikipedia).
Table de vérité d'une bascule JK
La table de vérité d'une bascule JK est :
J | K | Q+
|
0 | 0 | Q
|
0 | 1 | 0
|
1 | 0 | 1
|
1 | 1 | /Q (le complément de Q)
|
Table des transitions d'une bascule JK
Sa table des transitions déduites de sa table de vérité est :
Q | Q+ | J | K
|
0 | 0 | 0 | x
|
0 | 1 | 1 | x
|
1 | 0 | x | 1
|
1 | 1 | x | 0
|
Compteur modulo 16
Un compteur modulo 16 nécessite 4 bascules JK.
Etats du compteur
Les états d'un compteur modulo 16 ainsi que les états de bascules JK sont les suivants :
Etat | Q | Q+ | d | c | b | a
|
d | c | b | a | d | c | b | a | J | K | J | K | J | K | J | K
|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | x | 0 | x | 0 | x | 1 | x
|
1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | x | 0 | x | 1 | x | x | 1
|
2 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | x | 0 | x | x | 0 | 1 | x
|
3 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | x | 1 | x | x | 1 | x | 1
|
4 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | x | x | 0 | 0 | x | 1 | x
|
5 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | x | x | 0 | 1 | x | x | 1
|
6 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | x | x | 0 | x | 0 | 1 | x
|
7 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | x | x | 1 | x | 1 | x | 1
|
8 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | x | 0 | 0 | x | 0 | x | 1 | x
|
9 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | 0 | x | 0 | 0 | x | 1 | x | x | 1
|
10 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | x | 0 | 0 | x | x | 0 | 1 | x
|
11 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | x | 0 | 1 | x | x | 1 | x | 1
|
12 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 | x | 0 | x | 0 | 0 | x | 1 | x
|
13 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | x | 0 | x | 0 | 1 | x | x | 1
|
14 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | x | 0 | x | 0 | x | 0 | 1 | x
|
15 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | x | 1 | x | 1 | x | 1 | x | 1
|
Matrice de référence
La matrice de référence des états du compteur :
QdQc\QbQa | 00 | 01 | 11 | 10
|
00
| 0 | 1 | 3 | 2
|
01
| 4 | 5 | 7 | 6
|
11
| 12 | 13 | 15 | 14
|
10
| 8 | 9 | 11 | 10
|
Réduction des fonctions J et K
QdQc\QbQa | 00 | 01 | 11 | 10
|
00
| 1 | x | x | 1
|
01
| 1 | x | x | 1
|
11
| 1 | x | x | 1
|
10
| 1 | x | x | 1
|
|
Ja = 1 | |
QdQc\QbQa | 00 | 01 | 11 | 10
|
00
| x | 1 | 1 | x
|
01
| x | 1 | 1 | x
|
11
| x | 1 | 1 | x
|
10
| x | 1 | 1 | x
|
|
Ka = 1 |
QdQc\QbQa | 00 | 01 | 11 | 10
|
00
| 0 | 1 | x | x
|
01
| 0 | 1 | x | x
|
11
| 0 | 1 | x | x
|
10
| 0 | 1 | x | x
|
| Jb = Qa | |
QdQc\QbQa | 00 | 01 | 11 | 10
|
00
| x | x | 1 | 0
|
01
| x | x | 1 | 0
|
11
| x | x | 1 | 0
|
10
| x | x | 1 | 0
|
| Kb = Qa |
QdQc\QbQa | 00 | 01 | 11 | 10
|
00
| 0 | 0 | 1 | 0
|
01
| x | x | x | x
|
11
| x | x | x | x
|
10
| 0 | 0 | 1 | 0
|
| Jc = QaQb | |
QdQc\QbQa | 00 | 01 | 11 | 10
|
00
| x | x | x | x
|
01
| 0 | 0 | 1 | 0
|
11
| 0 | 0 | 1 | 0
|
10
| x | x | x | x
|
| Kc = QaQb |
QdQc\QbQa | 00 | 01 | 11 | 10
|
00
| 0 | 0 | 0 | 0
|
01
| 0 | 0 | 1 | 0
|
11
| x | x | x | x
|
10
| x | x | x | x
|
| Jd = QaQbQc | |
QdQc\QbQa | 00 | 01 | 11 | 10
|
00
| x | x | x | x
|
01
| x | x | x | x
|
11
| 0 | 0 | 1 | 0
|
10
| 0 | 0 | 0 | 0
|
| Kd = QaQbQc |
Résultats
Les résultats de la réduction des fonctions J et K sont compréhensibles :
- Qa change de valeur à chaque impulsion d'horloge. Cela se réalise quand J = K = 1 d'après la table de vérité de la bascule JK, d'où Ja = Ka = 1.
- Qb change de valeur seulement quand le bit inférieur (Qa) est à 1, sinon il conserve sa valeur. D'ou Jb = Kb = Qa.
- Qc change de valeur seulement quand les deux bits inférieurs (Qa et Qb) sont à 1, sinon il conserve sa valeur. D'ou Jc = Kc = QaQb.
Conclusions
Ressources