Crédit, intérêt et primes
Un article de Wikipedia.
(→Cas particulier d'un grand nombre de mensualités à un taux non nul) |
m (→Cas particulier d'un grand nombre de mensualités à un taux non nul) |
||
Ligne 160 : | Ligne 160 : | ||
m ≥ ln [ ( 1 + ε ) / ε ] / ln α | m ≥ ln [ ( 1 + ε ) / ε ] / ln α | ||
+ | |||
+ | On voit bien que plus ε et / ou le taux d'intérêt (et donc α) est / sont petit(s) et plus m est grand. | ||
== Proportionnalités == | == Proportionnalités == |
Version du 15 juin 2016 à 12:47
Sommaire |
But
Déterminer l'intérêt d'un crédit ainsi que la prime à rembourser mensuellement en fonction du taux d'intérêt et du nombre de mensualités pour le remboursement du crédit.
Introduction
Soit les définitions de variables suivantes :
M | montant du crédit ( M > 0) |
t | taux annuel d'intérêt du crédit |
m | nombre de mensualités du crédit |
P | prime mensuelle pour le remboursement du crédit |
I | intérêt du crédit |
Préliminaires
Un montant M est placé durant une année à au taux d'intérêt annuel t, alors le montant Mannuel à la fin de l'année est :
Mannuel = M ( 1 + t )
Si le montant M est placé durant un mois à un taux d'intérêt annuel t, alors le montant Mmensuel à la fin du mois est :
Mmensuel = M ( 1 + t ) (1/12)
Et, au fil des mois, et sur 12 mois nous avons :
Mannuel = M ( 1 + t ) (1/12)( 1 + t ) (1/12) ...( 1 + t ) (1/12) = M (( 1 + t ) (1/12))12 = M ( 1 + t )
Pour simplifier la notation posons donc :
α = ( 1 + t ) (1/12)
Nous avons alors :
Mmensuel = M α Mannuel = M α12
Prime du crédit
Pour en revenir au crédit, soit un crédit M prêté au taux d'intérêt annuel t durant m mensualités. Et soit P la prime à payer à priori inconnue.
L'idée est simple, initialement, à la mensualité k = 0, le montant du crédit est -M.
Après un mois (k = 1), le crédit initial M prêté au taux d'intérêt t est devenu -M α et nous avons remboursé le crédit en versant la prime P. Le montant du crédit devient donc -M α + P.
Au mois suivant (k = 2), le montant du crédit (-M α + P) prêté au taux d'intérêt t devient (-M α + P) α et nous avons versé la prime P. Le nouveau montant du crédit devient donc (-M α + P) α + P
En continuant ainsi :
-Mk+1 = -Mk α + P (pour k ≥ 0) avec -M0 = -M
En développant la série :
k | Montant du crédit |
0 | -M |
1 | -M α + P |
2 | ( -M α + P ) α + P = -M α2 + P ( 1 + α ) |
3 | ( -M α2 + P ( 1 + α ) ) α + P = -M α3 + P ( 1 + α + α2 ) |
k | -Mk-1 α + P |
n | -M αn + P ( 1 + α + α2 + ... + αn-1 ) = -M αn + P ( α n - 1 ) / ( α - 1 ) |
Et après m mensualités, le montant du crédit est nul et donc
-M αm + P ( α m - 1 ) / ( α - 1 ) = 0
ou
(1) P = M αm ( α - 1 ) / ( α m - 1 )
qui est le montant de la prime recherché.
Intérêt du crédit
Quel est alors l'intérêt du crédit ?
Pour rembourser le crédit M, il a fallu payer m mensualités de prime P.
L'intérêt du crédit est donc
(2) I = m P - M (2') I = m M αm ( α - 1 ) / ( α m - 1 ) - M = M [ m αm ( α - 1 ) / ( α m - 1 ) - 1 ]
Cas particuliers
Cas particulier du taux d'intérêt nul
Pour vérification, vérifions le cas du taux d'intérêt nul.
Si le taux d'intérêt est très faible, le développement de αn est
αn = ( 1 + t )( n/12 ) = 1 + n t / 12 + O( t2 ) = 1 + n β t + O( t2 ) si t ≅ 0 et avec β = 1/12
Alors la prime P (1) devient
P = M αm ( α - 1 ) / ( α m - 1 ) ≅ M ( 1 + m β t ) ( 1 + β t - 1 ) / ( 1 + m β t - 1 ) ≅ M (1 + m β t) / m ≅ M / m si t ≅ 0
Nous avons bien que la prime se résume au montant M divisé par le nombre de mensualités.
Et l'intérêt (2) est bien nul.
I = m P - M = m M / m - M = 0
Cas particulier d'une unique mensualité
Si m = 1, la prime P (1) vaut
P = M αm ( α - 1 ) / ( α m - 1 ) = M α ( α - 1 ) / ( α - 1 ) = M α
et l'intérêt (2) est bien celui attendu
I = m P - M = M α - M = M ( α - 1 )
Cas particulier d'un grand nombre de mensualités à un taux non nul
Si le taux d'intérêt est non nul et le nombre de mensualités grand, alors comme
P = M αm ( α - 1 ) / ( α m - 1 )
on a
αm / ( α m - 1 ) → 1 si m grand et t > 0
et donc
P → M ( α - 1 ) si m grand et t > 0
En d'autres termes, la prime P à rembourser tend vers l'intérêt mensuel I = M ( α - 1 ) (cas particulier d'une unique mensualité).
Mais quel est l'ordre de grandeur associé à m grand ?
Posons
αm / ( α m - 1 ) ≤ 1 + ε
avec ε un nombre positif proche de zéro.
Alors
1 / ( 1 - 1 / αm ) ≤ 1 + ε 1 / ( 1 + ε ) ≤ 1 - 1 / αm 1 / αm ≤ 1 - 1 / ( 1 + ε ) = ε / ( 1 + ε ) ( 1 + ε ) / ε ≤ αm ln [ ( 1 + ε ) / ε ] ≤ m ln α ln [ ( 1 + ε ) / ε ] / ln α ≤ m
donc
m ≥ ln [ ( 1 + ε ) / ε ] / ln α
On voit bien que plus ε et / ou le taux d'intérêt (et donc α) est / sont petit(s) et plus m est grand.
Proportionnalités
Les équations de la prime P (1) et de l'intérêt I (2) et (2') montrent que les rapports P / M et I / M ne dépendent que du nombre de mensualités et du taux d'intérêt.
Cela signifie en particulier que si le montant d'un crédit double, la prime et l'intérêt doubles aussi.