Fraction générant son développement numérique
Un article de Wikipedia.
(→Quelques conséquences) |
(→Quelques conséquences) |
||
Ligne 57 : | Ligne 57 : | ||
** Si f = 1/p = [a<sub>1</sub>...a<sub>k</sub>] avec k pair, alors 1/p = n/9<sub>1</sub>9<sub>2</sub>..9<sub>2*m</sub>, avec k = 2 * m, et n = a<sub>1</sub>...a<sub>k</sub>, alors n * p = 9<sub>1</sub>9<sub>2</sub>..9<sub>k</sub> = 99 * (01<sub>1</sub>01<sub>2</sub>...01<sub>m</sub>) où le dernier nombre est formé de m répétitions du groupe 01. | ** Si f = 1/p = [a<sub>1</sub>...a<sub>k</sub>] avec k pair, alors 1/p = n/9<sub>1</sub>9<sub>2</sub>..9<sub>2*m</sub>, avec k = 2 * m, et n = a<sub>1</sub>...a<sub>k</sub>, alors n * p = 9<sub>1</sub>9<sub>2</sub>..9<sub>k</sub> = 99 * (01<sub>1</sub>01<sub>2</sub>...01<sub>m</sub>) où le dernier nombre est formé de m répétitions du groupe 01. | ||
** Ainsi, si p est premier et ne divise pas 3 ou 11 (99 = 3<sup>2</sup> * 11) alors n est un modulo de 99. | ** Ainsi, si p est premier et ne divise pas 3 ou 11 (99 = 3<sup>2</sup> * 11) alors n est un modulo de 99. | ||
- | ** Et, en particulier, comme n = a<sub>1</sub>...a<sub>k</sub> = a<sub>1</sub>...a<sub>2*m</sub> = a<sub>1</sub>a<sub>2</sub>...a<sub>2*m-1</sub>a<sub>2*m</sub> et que 10<sup>2*j</sup> modulo 99 = 1 pour j ≥ 1, alors : | + | ** Et, en particulier, comme n = a<sub>1</sub>...a<sub>k</sub> = a<sub>1</sub>...a<sub>2*m</sub> = a<sub>1</sub>a<sub>2</sub>...a<sub>2*m-1</sub>a<sub>2*m</sub> et que 10<sup>2*j</sup> modulo 99 = (10<sup>2</sup>)<sup>j</sup> modulo 99 = 1 pour j ≥ 1, alors : |
** n modulo 99 = a<sub>1</sub>a<sub>2</sub> + a<sub>3</sub>a<sub>4</sub> + ... + a<sub>2*m-1</sub>...a<sub>2*m</sub> modulo 99 = 0, autrement dit, la somme des paires du nombre n du développement numérique de la fraction 1/p est un multiple de 99. | ** n modulo 99 = a<sub>1</sub>a<sub>2</sub> + a<sub>3</sub>a<sub>4</sub> + ... + a<sub>2*m-1</sub>...a<sub>2*m</sub> modulo 99 = 0, autrement dit, la somme des paires du nombre n du développement numérique de la fraction 1/p est un multiple de 99. | ||
*** Exemples : | *** Exemples : |
Version du 13 juillet 2013 à 07:47
Sommaire |
Fraction générant son développement numérique
But
Déterminer la fraction f dont le développement numérique est 0.a1a2...ak-1aka1a2...ak-1ak... répétant le nombre n=a1a2...ak-1ak où ai pour 1 ≤i ≤ k est un chiffre de 0 à 9.
Introduction
Notation
Pour simplifier l'écriture, la fraction f = 0.a1a2...ak-1aka1a2...ak-1ak... pourra aussi être notée : f = [a1...ak] avec ai pour 1 ≤i ≤ k un chiffre de 0 à 9.
Construction de f
La construction de f est simple, si n = a1a2...ak-1ak alors f = n * 0.00..0100..01... = n * 0.0102...0k-11k0102...0k-11k... = n*[01...0k-11k] = n * [0..01] avec [0..01] composé de k-1 premier 0 et un 1.
Ou f = n * (1/10k+1/102*k+...) = n * (x+x2+x3+...) pour x = 1/10k.
Et, comme 1/(1-x) = 1+x+x2+x3+... si |x|<1.
Alors x+x2+x3+... = 1/(1-x)-1 = x/(1-x).
Appliqué au f précédent :
avec x = 1/10k f = n * x/(1-x) = n * 1/(1/x-1) = n / (10k-1).
Donc f = n / (10k-1).
Et, pour être plus explicite, 10k-1 = 999..99k soit un nombre formé d'autant de 9 que de chiffres dans f = [a1...ak] :
f = n / (10k-1) = n / 9192..9k
Résultats
Ainsi, avec le résultat précédemment acquis :
f = 1/3 = 0.3333... = [3] = 3/9
f = 1/7 = [142857] = 142857/999999
f = 0.201320132013... = [2013] = 2013/9999
Quelques conséquences
- 0.999999... = [9] = 9 / 9 = 1 !
- Il est facile de diviser par les nombres du type 99..9 puisque le développement numérique de la fraction résultante est connu :
- 4 / 9 = 0.44444... = [4]
- 7 / 9 = 0.77777... = [7]
- 43 / 99 = 0.43434343... = [43]
- 463746178 / 999999999 = 0.463746178463746178463746178... = [463746178]
- ...
- si f = 1/p = [a1...ak] avec p un nombre entier, alors p divise 9192..9k.
- En effet si 1/p = [a1...ak] alors 1/p = n/9192..9k et donc 9192..9k/p = n (avec n = a1...ak).
- En particulier :
- 7 divise 999999 puisque 1/7 = [142857]
- 13 divise 999999 puisque 1/13 = [076923]
- Un peu plus drôle :
- Si f = 1/p = [a1...ak] avec k pair, alors 1/p = n/9192..92*m, avec k = 2 * m, et n = a1...ak, alors n * p = 9192..9k = 99 * (011012...01m) où le dernier nombre est formé de m répétitions du groupe 01.
- Ainsi, si p est premier et ne divise pas 3 ou 11 (99 = 32 * 11) alors n est un modulo de 99.
- Et, en particulier, comme n = a1...ak = a1...a2*m = a1a2...a2*m-1a2*m et que 102*j modulo 99 = (102)j modulo 99 = 1 pour j ≥ 1, alors :
- n modulo 99 = a1a2 + a3a4 + ... + a2*m-1...a2*m modulo 99 = 0, autrement dit, la somme des paires du nombre n du développement numérique de la fraction 1/p est un multiple de 99.
- Exemples :
- 1/7 = [142857]. Et nous avons bien : 14 + 28 + 57 = 99
- 1/13 = [076923]. Et 07 + 69 + 23 = 99
- 1/17 = [0588235294117647]. Et 05 + 88 + 23 + 52 + 94 + 11 + 76 + 47 = 396 = 4 * 99
- 1/19 = [052631578947368421]. Et 05 + 26 + 31 + 57 + 89 + 47 + 36 + 84 + 21 = 396 = 4 * 96
Conclusions
Ressources
[[[Category:Mathématique]] [Category:Divers]]