Fraction générant son développement numérique

Un article de Wikipedia.

(Différences entre les versions)
(Notation)
m (Notation)
Ligne 7 : Ligne 7 :
Pour simplifier l'écriture, la fraction f=0.a<sub>1</sub>a<sub>2</sub>...a<sub>k-1</sub>a<sub>k</sub>a<sub>1</sub>a<sub>2</sub>...a<sub>k-1</sub>a<sub>k</sub>... sera notée : f=[a<sub>1</sub>...a<sub>k</sub>] avec a<sub>i</sub> pour 1 &le;i &le; k un chiffre de 0 à 9.
Pour simplifier l'écriture, la fraction f=0.a<sub>1</sub>a<sub>2</sub>...a<sub>k-1</sub>a<sub>k</sub>a<sub>1</sub>a<sub>2</sub>...a<sub>k-1</sub>a<sub>k</sub>... sera notée : f=[a<sub>1</sub>...a<sub>k</sub>] avec a<sub>i</sub> pour 1 &le;i &le; k un chiffre de 0 à 9.
-
La construction de f est simple, si n=a<sub>1</sub>a<sub>2</sub>...a<sub>k-1</sub>a<sub>k</sub> alors f=n*0.0<sub>1</sub>0<sub>2</sub>...0<sub>k-1</sub>1<sub>k</sub>0<sub>1</sub>0<sub>2</sub>...0<sub>k-1</sub>1<sub>k</sub>... = n*[0<sub>1</sub>...0<sub>k-1</sub>1<sub>k</sub>].
+
La construction de f est simple, si n=a<sub>1</sub>a<sub>2</sub>...a<sub>k-1</sub>a<sub>k</sub> alors f=n*0.00..0100..01...=n*0.0<sub>1</sub>0<sub>2</sub>...0<sub>k-1</sub>1<sub>k</sub>0<sub>1</sub>0<sub>2</sub>...0<sub>k-1</sub>1<sub>k</sub>... = n*[0<sub>1</sub>...0<sub>k-1</sub>1<sub>k</sub>]=n*[0..01] avec [00..01] composé de k-1 premier 0 et un 1.
== Résultats ==
== Résultats ==

Version du 13 juillet 2013 à 06:17

Sommaire

Fraction générant son développement numérique

But

Déterminer la fraction f dont le développement numérique est 0.a1a2...ak-1aka1a2...ak-1ak... répétant le nombre n=a1a2...ak-1ak où ai pour 1 ≤i ≤ k est un chiffre de 0 à 9.

Introduction

Notation

Pour simplifier l'écriture, la fraction f=0.a1a2...ak-1aka1a2...ak-1ak... sera notée : f=[a1...ak] avec ai pour 1 ≤i ≤ k un chiffre de 0 à 9.

La construction de f est simple, si n=a1a2...ak-1ak alors f=n*0.00..0100..01...=n*0.0102...0k-11k0102...0k-11k... = n*[01...0k-11k]=n*[0..01] avec [00..01] composé de k-1 premier 0 et un 1.

Résultats

Conclusions

Ressources

[[[Category:Mathématique]] [Category:Divers]]