Fraction générant son développement numérique
Un article de Wikipedia.
(Différences entre les versions)
m (→Notation) |
(→Notation) |
||
Ligne 6 : | Ligne 6 : | ||
=== Notation === | === Notation === | ||
Pour simplifier l'écriture, la fraction f=0.a<sub>1</sub>a<sub>2</sub>...a<sub>k-1</sub>a<sub>k</sub>a<sub>1</sub>a<sub>2</sub>...a<sub>k-1</sub>a<sub>k</sub>... sera notée : f=[a<sub>1</sub>...a<sub>k</sub>] avec a<sub>i</sub> pour 1 ≤i ≤ k un chiffre de 0 à 9. | Pour simplifier l'écriture, la fraction f=0.a<sub>1</sub>a<sub>2</sub>...a<sub>k-1</sub>a<sub>k</sub>a<sub>1</sub>a<sub>2</sub>...a<sub>k-1</sub>a<sub>k</sub>... sera notée : f=[a<sub>1</sub>...a<sub>k</sub>] avec a<sub>i</sub> pour 1 ≤i ≤ k un chiffre de 0 à 9. | ||
+ | |||
+ | La construction de f est simple, si n=a<sub>1</sub>a<sub>2</sub>...a<sub>k-1</sub>a<sub>k</sub> alors f=n*0.0<sub>1</sub>0<sub>2</sub>...0<sub>k-1</sub>1<sub>k</sub>0<sub>1</sub>0<sub>2</sub>...0<sub>k-1</sub>1<sub>k</sub>... = n*[0<sub>1</sub>...0<sub>k-1</sub>1<sub>k</sub>]. | ||
== Résultats == | == Résultats == |
Version du 13 juillet 2013 à 06:14
Sommaire |
Fraction générant son développement numérique
But
Déterminer la fraction f dont le développement numérique est 0.a1a2...ak-1aka1a2...ak-1ak... répétant le nombre n=a1a2...ak-1ak où ai pour 1 ≤i ≤ k est un chiffre de 0 à 9.
Introduction
Notation
Pour simplifier l'écriture, la fraction f=0.a1a2...ak-1aka1a2...ak-1ak... sera notée : f=[a1...ak] avec ai pour 1 ≤i ≤ k un chiffre de 0 à 9.
La construction de f est simple, si n=a1a2...ak-1ak alors f=n*0.0102...0k-11k0102...0k-11k... = n*[01...0k-11k].
Résultats
Conclusions
Ressources
[[[Category:Mathématique]] [Category:Divers]]